当前,人们在谈到数据分析时,只是在国内一些特别大的企业,比如BAT里,才能得到重视。当然,这得益于他们的长期积累,对数据和运营结合的比较好。
然而,对于更多的初创企业来说,对数据本身以及数据所能提供价值的认识程度,水平还不高,且不同公司间的差异还蛮大。
那么,作为公司管理者的您,是否会思考这样一个问题——我的公司需要数据分析吗?
为何数据分析会流于形式?
不同创业公司对于企业内部数据的分析,主要差异表现在以下三个层面:
1
价值的认知
许多公司处于疯狂增长时期,大家一拍脑子做的决定,可能已经产生很多价值了;这种情况下他们很难意识到数据决策能产生比暴力性增长更大的价值。
2
基本方法论的认知
意思是核心但简单的方法论。目前国内对基础的方法论没有太多的认知,可能因为国内发展时间还比较短,而在美国,已经开发好几十年了。
3
实际操作方法的认知
许多一线员工用数据来指导工作运营,比如产品、客户、销售等实际操作经验相对来说少一些。一方面,因为发展时间短,另一方面,数据使用理念积累也相对较少。
不过,已经有公司已在迅速地提升这种认知。但是这个认知,是分阶梯的,循序渐进的一个过程。由于技术和业务的鸿沟巨大,工程师被硬性要求建数据系统,但他并不真正了解业务端;业务端对技术也不是非常熟悉,导致很多需求并不能直接用现有技术手段来实现。
很多公司从头开始做的时候,大量时间花在建设技术平台的过程中。然而,技术平台首先很复杂,需要各种不同的工程人员;第二,很多公司都是从头摸索,但数据分析体系需要一系列流程和人才,每个都不能太薄弱,才能真正串起来。
这种大鸿沟,也无法让价值真正落地,甚至让人们产生“这个价值是否真能实现”的质疑,缺乏耐心。
什么样的公司需要注意数据?
宏观的讲,创业者会经历4-5个产品、企业的生命周期。
第一个阶段,叫冷启动。这个时候公司特别早期,天使轮或者A轮,甚至融资还未成功。处在这个阶段的公司,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。
第二个阶段—增长前期,就是冷启动接近完成。有经验的创业者,会开始布局和增长有关系的一些核心指标,比如说日/月活跃,留存度。这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。
并且,这些指标能够告诉我们,什么时候我们应该去做增长。产品本身没有黏度的话,去烧钱做增长,它不会真正地增长起来。因为流失速度超过增长速度。以前很多 烧钱的企业能成功,是因为竞争没有那么激烈,用户没有那么多种选择。但是今天如果你的产品很差,留存不高,口碑也不好,烧再多的钱也不能获得真正核心的自然增长。
第三个阶段是增长期。这个阶段就能看出来好的创业公司,和普通创业公司的巨大差别——效率。无论PR还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间PK的核心竞争力。
如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。通过单位时间转化效率的不断提高和叠加,来变成企业的核心竞争力。
一个不用数据驱动的公司,和一个用数据驱动的公司。假设运营策略一样,资本储备类似,客户也一样,能迅速从数据里学习的企业,一定会胜出。
第四个阶段是变现期。业务变现,要求很高的用户基数。一般互联网产品,其中一小部分高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。
一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、 甚至客户运营的方法。而其中每个环节小幅提高,加在一起就是一个倍数的提高。这种倍增,如果没有做过数据化运营的人,很难体会到会有多大。
还有一点,企业应该运营化。什么概念?就是说,数据分析,它不是一个运动式的,而是日常性事务——每天、每周、每月、每季度,我们都在看这些东西。不断调优、学习、促进,这是一个很重要的过程。但是习惯培养蛮痛苦的,因为很多的创业者都很忙,哪有时间去看那些东西。
好的数据分析是怎么样的?
好的数据分析,能够让公司里所有人都获益。它不是一种特权,不是只给公司里的一两个人看,而是能够让公司里面各个运营部门,特别是前线打仗的部门,能够直接得到好处。
普通只讲战略,只讲大方向,只给CEO看,只给VP或者运营看——这不够。需要把它给工作在一线的员工,让他们用起来。这个我觉得是区分一个数据驱动型企业,和非数据驱动型企业一个很大的区别。效率提升,是所有人提升,而不是一两个人提升。
一个公司要建完整的数据分析机制,首先应该从业务开始。所有的数据分析运营或者数据体系,都应该从业务,从客户开始。这个数据分析体系,不应该只解决非常狭窄的一个或者两个问题,需要有体系和大局观。
然后,实际上数据分析里面,最难的一个部分是数据搜集和数据整理,这个过程最耗费时间,可能因为刚开始的计划就做的不够周全。所以说,在数据采集和数据整理方面,应该很有计划的重视。
到后面,数据分析,不能只仅仅停留在报表的基础上,价值还是不够多。最终还是,那些数字出来以后,告诉别人应该怎么做是对的、有效的。这里面的话,就是有很深学问,需要很强的操作能力。
怎样才能对企业数据进行分析
前文讲到,很多企业为了进行数据分析,自己搭建了很多系统以及上线了许多应用,但缺乏顶层设计,各应用系统间缺乏联动,随着业务需求上线更多应用,企业移动应用的碎片化以及应用的孤岛现象愈发严重。不仅费时费力,效果还并不明显。那么,怎样才能对企业数据进行科学的分析和决策呢?
事实上,企业内的人力资源系统、ERP系统、财务系统、库存管理系统等看似各自独立,但所有系统在数据和业务逻辑上却都密切相关。这也导致企业使用了多少个应用,就存在多少个数据孤岛。因此,想要对企业内的数据进行综合、全面、科学的评估,就需要能够打通企业不同应用间数据的工作平台来完成。
今年9月,畅捷通推出了以畅捷通工作圈为入口的小微企业管理云平台,支持企业实现数据集成和应用集成,使企业数据能够在各个应用间自由地流转,且能实现跨应用的业务流程,让企业应用真正为企业的经营发挥出最大价值。
在平台上,各个应用可以做到数据彼此相识,流程相互激发和控制,从而实现人与数据、业务与数据、应用与应用的连接,真正实现通过数据分析让企业的运作和管理更加敏捷高效。